Urban gridlock: Macroscopic modeling and mitigation approaches

Carlos F. Daganzo

Transportation Research Part B (in press)

Collaborators: Nikolas Geroliminis, Olivia Ong and Amy Wang
KEY ISSUES

• MOBILITY IMPROVEMENT APPROACH
 PROPOSE→ EVALUATE→ IMPLEMENT

• FRAGILE EVALUATION MODELS
 – Inputs unreliable
 – Outputs unpredictable

• WHAT TO DO?

• ROBUST APPROACH
 PROPOSE→ MONITOR→ MODIFY

• BUT IS IT POSSIBLE?
DEFINITIONS

Accumulation: \(n_i \) (vehs)

Travel Production: \(P_i = n_i \cdot u_i \) (veh-km/hr)

Output: \(E_i = n_i \cdot u_i \cdot \alpha_i \) (vh/hr)
AGGREGATION HYPOTHESIS

\[P = \sum P_i = \sum Q_i(n_i) \approx Q\left(\sum n_i\right) \]

\[E = \sum E_{ij} = \sum G_i(n_i) \approx G\left(\sum n_i\right) \]
AGGREGATE DYNAMICS

Given: \(Q, G \)
Control: \(O(t) \)
Monitor: \(n(t) \)
Maximize: \(\int E(t) dt \)

\[
\frac{dn(t)}{dt} = O(t) - G(n(t))
\]

POLICY: \(n^*(t) \approx n_{crit} \)
PROPERTIES OF POLICY

- Observable (monitor)
- Robust (no forecasts)
- Pareto Efficient
ADDITIONAL INSIGHTS AND CONCLUSIONS

• INVARIANCE PRINCIPLE 2: TRAFFIC vs. DESTINATION DENSITY
 • Multi-Reservoir Systems
 • Multimodal principles
 • Tests and deployment
QUESTIONS

http://www.its.berkeley.edu/volvocenter/